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1. Introduction

Over the past thirty years, real home prices and rents in dense urban centers in the
U.S. grew more rapidly than housing costs in suburban metropolitan neighborhoods
(Howard and Liebersohn 2021).1 At the same time, the vast majority of housing supply
growth has been in low-density suburbs, which accounted for less than half of the
metropolitan area housing stock in the U.S. in 1990 but more than 80% of the increase in
housing supply between 1990 and 2018 (Baum-Snow 2023).2 This pattern of rising prices
in dense urban centers and expanding supply on the urban periphery reflects both a
secular increase in the demand for urban amenities and the difficulty of building in
already developed central neighborhoods (Couture et al. 2021; Couture and Handbury
2020; Glaeser andGyourko 2003; Baum-SnowandHan 2021; Gyourko, Saiz, and Summers
2008). But the pattern also raises an important question about how U.S. cities can best
address what is widely regarded as a housing-affordability crisis. Namely, can continued
suburban expansion alleviate rising housing costs in the urban center, or will cities
have to grow denser to become more affordable?

In this paper, we seek to answer this question by examining how different housing
submarkets are connected by residential mobility. If residential mobility is high, then
an increase in the supply of housing in one submarket can decrease housing costs in
other disparate submarkets.3 If, on the other hand, there is little mobility between
housing submarkets, the benefits of expanding the supply of one type of housing will
be concentrated among the residents of that type of housing. These two possibilities
are represented in two sides of an ongoing debate about urban housing policy, with one
side advocating for dramatically expanding the overall supply of housing and the other
arguing that increasing the supply of market-rate housing will do little to make cities
more affordable for low- and middle-income households that are unable to afford these
newmarket-rate housing units (Been, Ellen, and O’Regan 2019; Gray 2021; Demsas 2022;
Dougherty 2020; Friedrich et al. 2023).4

1Between 1990 and 2018, real rents in the 10% of tracts closest to the city center increasing by an
average of 45%, substantially more than the average increase in real metropolitan rents of 30%. Wemake
these and subsequent aggregate-level calculations using National Historical Geographic Information
System (NHGIS) data (Manson et al. 2023).

2By contrast, the supply of housing in the 10% of tracts closest to city centers increased by less than
one million units, accounting for less than 3% of the growth in metro area housing supply.

3In the extreme case of perfect mobility, then spatial equilibrium implies that all households are
equally well off and thus that expanding the supply of housing of one type will benefit all residents of the
city equally.

4The pro-supply and supply-skeptical sides of this debate are respectively summarized by the con-
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Importantly, expanding the supply of one type of housing can make other types
of housing more affordable even if there is little residential mobility directly between
the two submarkets, so long as the submarkets are connected by a chain of residential
moves that pass through other submarkets. This paper directly studies these residential
vacancy chains – the series of moves initiated by the construction of a new housing
unit.5 The first migration round, or “link”, in a vacancy chain consists of moves into a
newly constructed housing unit, which potentially leave the movers’ origin units vacant.
The second link consists of moves into these vacated units – moves that generate their
own set of vacancies. The chain continues on in this way until it ends, either because
the origin unit is not vacated6, because the vacated origin unit remains vacant or is
demolished, or mover’s origin unit lies outside the market under consideration, as in
the case of a move originating outside the U.S.

In the first part of this paper, we motivate our focus on vacancy chains with a simple
model and then present new descriptive facts about the vacancy chains initiated by
different kinds of new housing. We show that vacancy chains are relatively short and
that new suburban housing supply generates fewmoves in urban neighborhoods. In the
second part of the paper, we conduct a simulation exercise to understand the economic
consequences of the descriptive facts we document. We find that the number of vacan-
cies created in a neighborhood is strongly correlated with the price and welfare effects
of new housing. These simulation results, when applied to our descriptive findings,
imply that the geographic and distributional incidence of the benefits of new housing
supply depend importantly on where and what kind of new housing is built.

To fix ideas, we begin by presenting a simple stylized model of a differentiated hous-
ing market and derive a general expression for the effect of additional supply in one
submarket on prices in other submarkets. We show that even in this simple model,
this price effect can be decomposed into a direct effect and an indirect effect, with
the indirect effects depending on a chain of cross-submarket residential substitution
terms.7 The expression for the indirect price effect in our model illustrates the po-

trasting headlines, “Build Build Build Build Build Build Build Build Build Build Build Build Build Build”
(Dougherty 2020) and “More Building Won’t Make Housing Affordable” (Friedrich et al. 2023).

5Vacancy chains may be initiated by other events, such as a death that creates a new vacancy or the
consolidation of two households. Because we are interested in understanding the effects of new housing
construction, we focus only on vacancy chains initiated by the creation of a new housing unit.

6The origin unit of a move is not vacated when a new household is formed, as in the case when a
roommate moves out to live on her own.

7More precisely, the indirect effects depend on the product of residential diversion ratios. The resi-
dential diversion ratio between neighborhoodsm and n captures the share of households that leavem in
response to rising housing costs that substitute towards n.
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tential importance of vacancy chains as a mechanism connecting different housing
submarkets.

Our descriptive characterization of residential vacancy chains is one of the main
contributions of our paper. We use newly available administrative data from the Census
Bureau on the residential histories of the entire U.S. population from 2000 to 2021 and on
the inventory of U.S. residential housing units in 2022. We use these data to identify 1.5
million new single family suburban and multifamily urban housing units built between
2009 and 2018 in the 17 most populous metropolitan areas in the U.S. We then construct
the vacancy chains initiated by these units, tracing their paths through different kinds
of neighborhoods. We document that while vacancy chains that grow long enough
do connect disparate housing submarkets, vacancy chains are generally quite short,
with 90% ending within three migration rounds.8 We also show that the majority of
vacancies created by a new unit are created within one year of the initial move into
that unit, implying that the vacancy chains we construct would not grow substantially
longer if followed over a longer period of time.

We find that each unit of new high-income urban multifamily and new low-density
suburban single family housing creates an average of .9 vacancies that subsequently
become occupied within four years.9 Because new housing units are typically more
expensive, the number of vacancies created in below-median income tracts is much
lower: New high-income urban multifamily housing generates about .15 such vacancies
and low-density suburban single family homes generate .25 such vacancies. The number
of vacancies created in low-income high-density tracts is even lower still, with high-
income urbanmultifamily and low-density suburban single family housing respectively
creating only .03 and .015 vacancies in below-median income tracts in the top decile of
population density.

While the connectivity between the submarkets for new suburban single family
housing and for housing in low-income high-density tracts is especially low, the large
increase in the supply of suburban homes means that new suburban construction has
generated more vacancies in low-income high-density tracts than has new high-income
urbanmultifamily construction. The 1.2million new low-density suburban single family
units identified in our data collectively created about 17 thousand vacancies in low-

8Existing work on residential vacancy chains by Mast (2021) and Bratu, Harjunen, and Saarimaa (2023)
similarly documents the connections between disparate submarkets created by residential mobility.
The fact that vacancy chains end quickly is a new fact that we are able to establish because of the
comprehensive data we use.

9To avoid counting demolished units and units that are unavailable for occupancy because of renova-
tion, we only count vacated units that subsequently become occupied.
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income high density tracts, compared to the 11 thousand such vacancies created by the
356 thousand new high-income urban multifamily units identified in our data.

These descriptive results are suggestive but cannot tell us about to the effects of new
suburban and urban housing construction on prices and thewelfare of residentswithout
additional structure. In the second part of this paper, we conduct a simulation exercise
that connects the observed characteristics of vacancy chains to the unobserved price
and welfare consequences of new housing construction. We conduct these simulations
using a model and preference parameters taken from Bayer, Ferreira, and McMillan
(2007) and data drawn from the IPUMS 1990 5% sample10.

The simulation exercise is conceptually simple: We first simulate an initial equilib-
rium set of prices and matches between households and housing units; then, iterating
many times, we add a small number of new housing units to a randomly chosen neigh-
borhood and simulate the new equilibrium prices andmatches. The difference between
the initial equilibrium and the new equilibrium implies a set of vacancy chains, price
effects, and welfare effects, which we analyze to understand what vacancy chains can
tell us about the price and welfare effects of new housing. This exercise is the second
main contribution of our paper.

We show that, despite using a relatively small sample of data for our simulation, our
initial equilibrium prices and assignment of households to housing units replicate the
key stylized patterns found in the underlying data. We then simulate the effect of a 5%
increase in housing supply in one neighborhood at a time, running 1,000 simulations
in total. The simulated welfare and price effects of new housing are economically
meaningful – the average elasticity of the returns to living in the city with respect to
an increase in supply is 1, and the average elasticity of the urban rent premium with
respect to supply is -0.3.

Underlying these average effects is considerable variation in the impact of new
housing supply. We show that the number of vacancies created in a neighborhood by
vacancy chains initiated by new housing is strongly correlated with this variation. We
then compare the predictive power of these vacancies with the direct and indirect cross-
neighborhood substitution effects implied by the model underlying our simulation.
A key result is that the observed number of vacancies is as predictive of variation in
the price effects of new housing as are the model-derived substitution effects. The
fact that vacancy chains are relatively easy to observe, whereas the model-derived
10We use the IPUMS 1990 5% sample rather than the Census Bureau microdata used for our descriptive

analysis because it more closely corresponds to the data used to estimate the preference parameters in
Bayer, Ferreira, and McMillan (2007).
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substitution effects require the estimation of a large number of own- and cross-price
demand parameters, makes them especially useful for predicting the non-local price
effects of new housing.

Related Literature. This paper builds on and contributes to several strands of the exten-
sive literature on housing supply and affordability. Our work is most closely related to a
small literature on vacancy chains that goes back to White (1971). The data required
to observe vacancy chains means that earlier work was mostly theoretical or relied
on statistical modeling of vacancy chains (Marullo 1985; Turner 2008). The availability
of more detailed data on residential histories has only recently made it possible to
construct vacancy chains, as in recent work by Mast (2021) and Bratu, Harjunen, and
Saarimaa (2023) who study residential vacancy chains in the U.S. and Finland, respec-
tively. Our data allow us to contribute to this literature by documenting new facts about
vacancy chains. In addition, we contribute to this literature by providing insights into
the economic implications of these descriptive patterns.

Previous work has examined other ways in which housing submarkets intercon-
nect, either through filtering (Rosenthal 2014; Liu, McManus, and Yannopoulos 2022),
search (Piazzesi, Schneider, and Stroebel 2019; Landvoigt, Piazzesi, and Schneider 2015),
aggregate substitution between housing submarkets (Nathanson 2020), or the hyper-
local effects of new housing construction (Asquith, Mast, and Reed 2021; Damiano
and Frenier 2020; Diamond and McQuade 2019; Pennington 2021; Li 2019). Vacancy
chains represent an important micro-level mechanism underlying these higher-level
mechanisms.

We also contribute to the literature on the city-wide effects of increases in housing
supply (e.g., Anenberg and Kung (2020); Molloy, Nathanson, and Paciorek (2022)). Our
approach allows us to contribute to this literature by going beyond city-wide averages
to better understand the geographic and sociodemographic incidence of the benefits of
new housing.

Finally, this paper relates to extensive literatures on supply constraints (Song 2021;
Gyourko, Saiz, and Summers 2008; Saiz 2010; Baum-Snow and Han 2021; Kulka, Sood,
and Chiumenti 2022) and urban housing affordability (Couture et al. 2021; Couture and
Handbury 2020; Su 2021;Handbury 2021). The consequences of urban supply constraints
on urban housing costs depend crucially on residential mobility across submarkets.
This, in turn, has significant implications for housing policy. If households are able to
move easily between submarkets, then policies that increase supply in areas with few
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constraints may be effective. In contrast, limited mobility between submarkets would
recommend policies that relax existing constraints.We contribute to these literatures by
documenting the extent to which increases in the supply of housing in one submarket
ripple across other submarkets.

The rest of this paper proceeds as follows: Section 2 presents a simplemodel of differ-
entiated housing demand to fix ideas. Section 3 describes our data and the construction
of vacancy chains. Section 4 presents new descriptive facts about vacancy chains initi-
ated by new housing construction in the U.S. Section 5 describes our simulation exercise
and results. Section 6 concludes.

2. A Simple Model

In this section, we develop a simple static model of residential demand for housing in
different submarkets. Despite the model’s simplicity, we are able to express the effect
of an increase in the supply of housing in one submarket on housing prices in other
submarkets as a function of direct and indirect effects, with the indirect effects consist-
ing of a chain of residential substitution effects mediated by intermediary submarkets.
This chain of substitution effects is naturally interpreted as a residential vacancy chain,
thus motivating the descriptive analysis of residential vacancy chains in Section 4.

Setup. We model the housing market of a single city as being made up of housing
submarkets n ∈ N = {1, ...,N}. Housing supply in each submarket is perfectly inelastic,
with supply in submarket n denoted Sn. We model demand for housing in submarket n
with the reduced form Dn(p), where p = ( p1, ..., pN) is the vector of prices for housing
in all submarkets. We assume that ∂Dn(p)∂ pn

< 0 and ∂Dn(p)
∂ pm

≥ 0 form ̸= n. We denote the

own-price effect on demand for submarket n by ϵn ≡ –∂Dn∂ pn
; and the cross-price effect

on demand for submarket n with respect to prices in m ̸= n by γnm ≡ ∂Dn
∂ pm

. Prices in
equilibrium adjust to clear each submarket.

In addition, we denote the “residential diversion ratio” ofm to n by λnm ≡ γnm
ϵm

. This
measure captures the share of the change in demand for housing in submarketm that
comes from substitution to or from submarket n when price pm changes. In the event
of a decrease in pm, λnm represents the share of increased demand for housing inm due
to substitution away from n. When aggregate residential demand is microfounded on
household preferences that feature unit housing demand, this interpretation of λnm is
further refined to the share of households that move to submarketm that come from
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submarket n.

Cross-market effects. We are interested in how an increase in supply in one submarket
affects prices in other submarkets. Without loss of generality, we consider the impact
of an exogenous increase in supply in submarket 1 on prices in submarket 2.

For clarity of exposition, first consider the cross-market price effects when N =
3. Differentiating the market clearing conditions and solving the model yields the
following:

d p2
dS1

∝ –ϵ–12

 λ21︸︷︷︸
direct effect

+ λ23λ31︸ ︷︷ ︸
indirect effect

 .

This expression shows that the cross-market price effect depends on a direct effect, which
is proportional to the residential diversion ratio of 2 to 1, and an indirect effect, which is
proportional to the product of the residential diversion ratios of 3 to where 1 and of 2 to
3. The interpretation of this indirect effect is as follows: The increased supply in 1 leads
households to substitute housing demand away from 3 towards 1; this, in turn, leads
households to shift housing demand away from 2 towards 3. The natural interpretation
of this chain of substitution effects is a residential vacancy chain.

The fact that this cross-market price effect depends on a direct effect and on indirect
effects extends to the general case with N neighborhoods. We demonstrate this by first
deriving a general expression for the cross-price effects that takes a recursive form.

PROPOSITION 1. Given a set of neighborhoods N = {1, ...,N}, the price-effects of an increase
in S1 take the form:

(1)
d pi
dS1

= –ϵ–1i
Φi(N)∑

j ∈N λ1 jΦ j (N)
,

whereΦi(N) is defined recursively:

Φi ̸=1(N) =
∑
j ∈N\i

λi jΦ j (N \ i)(2)

Φ1(N) = –
∑
j ∈N\1

λN jΦ j (N \ 1).(3)

The recursive form of this expression shows that the cross-market price effects of
an increase in S1 on submarket i depend on the cross-market effects that would exist in

7



submarkets j ̸= i if submarket i were removed from N. These cross-market effects are
then transmitted to i based on the residential diversion ratio of i for j .

Given that we are able to express the cross-market effects in the case when N = 3
as a function of a direct and indirect effect, and given the general expression in the
proposition above, it follows from inspection that the price effects consist of a direct
effect and a set of indirect effects for any N ≥ 3. Further, the indirect effects themselves
consist of direct and indirect effects, resulting in indirect effects running between
submarkets 1 and 2 that are mediated by up to N – 2 other neighborhoods. While the
simple setup of this model doesn’t allow us to make explicit predictions about vacancy
chains, it illustrates the intuition for how an increase in the supply of housing in one
submarket impacts prices in another submarket through multiple chains of residential
substitution between neighborhoods. This motivates our descriptive analysis of vacancy
chains in Section 4.

3. Data

3.1. Data sources

Administrative data from the Master Address File. The primary data sources we use to
construct vacancy chains are derived from the Census Bureau’s Master Address File
(MAF). The MAF database is an inventory of all known living quarters in the United
States and was created for the 2000 Census. It is updated semi-annually from the US
Postal Services delivery sequence file. Additional updates occur through partnerships
with local and state governments, address canvassing activities, and other sources. The
MAF defines the base sampling frame for the American Community Survey, decennial
censuses, and other Census Bureau data products.

We use the 2022 MAF Extract (MAF-X), a snapshot of the MAF database in which
we observe the inventory of US housing units in 2022. Housing units in the MAF-X
are assigned a MAFID, a unique identifier that can be used to link records across data
sources. In addition, we observe housing units’ addresses and geographic locations.

In addition, we use the 2000-2021 MAF Auxiliary Reference Files (MAF-ARF) to
construct residential histories of the US population at an annual frequency (Genadek
and Sullivan). The MAF-ARF is derived from several underlying data sources, including
individual tax returns, Selective Service registration data, and Medicare enrollment.
Each year of the MAF-ARF is at the individual-level and consists of an individual-level
unique identifier and an associated MAFID.
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Two key housing unit characteristics for our analysis are the age of the unit and
the number of units in the unit’s building. While we do not directly observe these
characteristics, we are able to impute them from the MAF-X and MAF-ARF.

To impute the year in which a unit first becomes occupied, we use the first year
in which a MAFID is associated with a PIK in the MAF-ARF as that unit’s first year of
occupancy. We construct vacancy chains initiated by new housing in each year from
2009 to 2018. Because our residential histories extend back to 2000, units identified as
being new had no associated PIKs for at least nine years before first appearing in the
MAF-ARF.

To impute the number of units in a unit’s building, we simply take the number of
valid MAFIDs in the same census tract with the same street address. In doing so, we
exclude units that are indicated to be trailers or mobile homes, or have an address
indicating that units are located on separate lots.

Additional data sources. We combine these administrative data sources with data from
the American Community Survey (ACS) covering 2005-2018. We use the ACS to measure
the tract-level characteristics with which we characterize the vacancies created by new
housing units and the types of new housing constructed.

3.2. Moves across submarkets

Connections between housing submarkets. Figure 1 illustrates connections between hous-
ing submarkets within Core-Based Statistical Areas (CBSAs) with a 2010 population of
three million or greater between 2010 and 2017.

Figure 1A shows the share of individuals aged 25 and older moving from a tract at a
given within-CBSA decile of household income that increase or decrease their tract’s
decile by a given amount. Individuals who leave the CBSA account for the difference
between the total share of movers who change their tract’s decile and 1. The figure
shows that, while there is some stickiness in the kinds of tracts that individuals move
to, tracts at different deciles of household income are still connected by a substantial
number of moves. For example, while 41% of all moves out of top-decile tracts are
also to top-decile tracts, about 27% of moves are to lower-decile tracts within the same
CBSA. In addition, the figure illustrates how vacancy chains can connect submarkets
even when there are few direct moves between them. For example, while there are
very few direct moves between the bottom- and top-decile tracts, these two submarkets
are connected indirectly through chains of moves from bottom-decile tracts that pass
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A. Median Household Income

B. Median Two-Bedroom Rent C. Percent College-Educated

FIGURE 1. Moves between tracts within CBSAs

Note: This figure shows the distribution of changes in tract characteristics conditional on origin tract
characteristics for individuals aged twenty-five and older who moved between 2010 and 2017 and origi-
nated from a tract in a CBSA with a 2010 population of three million or more. In each panel, each column
of stacked bars represents movers out of an origin tract at the given within-CBSA decile of the indicated
characteristic. The size of each bar indicates the share of moves out of the given origin-tract decile that
result in the change of tract decile indicated in the legend of panel A. The stacked bars sum to less than
one because of moves out of the CBSA. We calculate tract characteristics using the 2013-2017 ACS.
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through tracts at other deciles and end at top-decile tracts. An example of one such
path is the series of moves from bottom-decile tracts to top-decile tracts that increase
the mover’s tract decile by one.

Panels B and C of Figure 1 illustrate similar patterns of migratory flows across
submarkets defined by median rents and college share.

3.3. Constructing vacancy chains

New housing gives rise to vacancy chains by initiating a series of moves in which
households move into newly available units and vacate their origin units. While the idea
is simple, some complications arise when considering how to construct a vacancy chain
and connect moves over time. First, not all moves leave a unit vacant, although they
may leave a room within the unit vacant. For example, if a roommate moves out, this
may initiate a series of moves even though the unit was not vacated. For our analysis,
we simplify things by only considering moves that vacate the origin unit. If a unit is not
vacated, the chain ends.

Second, units may sit vacant for some time before becoming occupied. When con-
structing and describing vacancy chains, we would like to describe not only the compo-
sition of neighborhoods and movers that are part of the chain but also how the chain
evolves over time. To do so, we construct vacancy chains over different time horizons.
Figure 2 illustrates how we construct a hypothetical vacancy chain initiated by a new
housing unit that was first occupied in 2010. To construct the first link of the chain,
we identify the occupants of the new housing unit and trace them back to their 2009
origin unit or units. For origin units that were vacated in the first link of the chain, we
search for new occupants in 2010 and trace them back to their 2009 origin unit or units,
constructing the second link of the chain.

We continue in this fashion until the chain ends, either because no origin unit is
found, an origin unit isn’t left vacant, or a vacated unit doesn’t become occupied within
the chosen time horizon. The vacancy chain illustrated in Figure 2 would end after
two rounds of moves if we were to construct the chain over a one-year horizon. Over
a two-year horizon, we are able to extend the chain by searching for a new occupant
of the vacated housing unit in 2011. We then continue building the chain over a one-
year horizon, with 2011 as the reference year. This generalizes for longer horizons
straightforwardly.
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FIGURE 2. Vacancy Chain Construction
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Describing vacancy chains. To characterize vacancy chains, we consider the number
of effective vacancies created in different kinds of neighborhoods. Effective vacancies
are calculated as a weighted sum, where the weights are inversely proportional to the
number of distinct chains connected to a given vacancy. For example, if a unit is vacated
by a move in which some household members move to a unit that is part of one vacancy
chain and the remaining household members move to a unit that is part of a separate
chain, we attribute half of the resulting vacancy to each chain. In addition, we assign a
weight of zero to units that are vacated but are not observed to be filled within the time
horizon under consideration. This is to avoid counting vacated units that are demolished
or are unavailable for occupancy due to renovation or redevelopment.

We focus on vacancy chains initiated by two types of new housing in CBSAs with
populations greater than three million: low-density suburban single family homes and
high-income urbanmultifamily buildings. The first type consists of single family homes
located in below-median density tracts outside the metropolitan area’s principal city.
New construction in these tracts accounts for 80% of the increase in housing stock in
the US since 1980 (Baum-Snow 2023). The second type of new construction we consider
consists of units in 20+ unit buildings located in above-median income tracts within
five miles of the metropolitan area’s central business district, which corresponds to
the type of new housing studied in the existing literature on vacancy chains (Mast
(2021); Bratu, Harjunen, and Saarimaa (2023)). Our primary analysis sample consists of
1,159,000 initiated by low-density suburban single family homes and 356,000 vacancy
chains initiated by high-income urban multifamily units.

4. Descriptive Facts

We now turn to our descriptive characterization of vacancy chains. We begin by con-
sidering how the composition of vacated units changes as the vacancy chain grows
longer. Figure 3 shows the share of effective vacancies created in tracts with a given
characteristic, conditional on the migration round and over a one-year horizon. Panel
A shows these shares for vacancy chains initiated by high-income urban multifamily
housing. The first round of moves into these new high-income units create vacancies
in predominantly high-income tracts, with 71% of vacancies created in top quintile
income tracts, 14% in below-median tracts, and only 8% in bottom quintile tracts. This
is unsurprising, given that these kinds of new units are typically very expensive.

As the chain progresses, however, the share of vacancies created in high-income
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A. High-Income Urban Multifamily B. Low-Density Suburban Single Family

FIGURE 3. Origin Tract Incomes by Migration Round

Note: This figure shows the share of vacated units in each migration round located in a tract with a given
characteristic. In each panel, migration round 1 represents vacancies created by the set of moves into the
new units that initiated the chain; migration round 2 represents the vacancies created by the set of moves
into the vacancies created in round 1; and so on. Chains are constructed over a one-year horizon. Tract
characteristics for vacancy chains initiated in year t are taken from the 5-year ACS covering years t – 4 to
t and quantiles correspond to the national distribution. Income is median household income per capita.

tracts in each round declines and the share created in low-income tracts rises. By the
sixth round of moves, 38% of vacancies are created in top quintile income tracts and
37% of vacancies are created in below-median income tracts.

Panel B of Figure 3 displays similar trends as the vacancy chains initiated by new
single family homes in low-density suburban tracts grow longer. The share of vacancies
in top quintile tracts declines from 40% in the first round of moves to 22% in the sixth
round while the share of vacancies created in below-median income tracts increases
from 24% in the first round to 44% in the sixth. A notable difference from the chains
initiated by high-income urbanmultifamily housing is that the vacancies created by the
initial set of moves is concentrated in tracts with lower median incomes. Again, this is
unsurprising, since housing costs for new single family homes in low-density suburbs
are typically lower than those for high-income urban multifamily units.

Overall, Figure 3 illustrates how different housing submarkets are connected by
residential mobility. The fact that new housing units create vacancies in lower income
tracts suggests that building new housing – even in high-income neighborhoods – can
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loosen demand for housing in lower segments of the market and lower housing costs.
Taken in isolation, this fact might suggest that a viable strategy for lowering housing

costs for low-income renters is to build more housing of any kind. However, another
salient fact illustrated in Figure 3 is that vacancy chains are relatively short. In both
panels, the density of the total number of vacancies is shown by the blue histogram.
Panel A shows that 77% of all vacancies created by high-income urban multifamily
housing are created in the first round of moves, and each round of moves creates about
25% as many vacancies as the previous round. In panel B, a qualitatively similar pattern
holds. An important implication of this pattern is that the location and type of new
housing construction matters. Even though increases in the supply of new high-end
housing can loosen demand in lower-end segments if the resulting vacancy chains go
on long enough, vacancy chains are very unlikely to continue for many rounds and
these supply increases are unlikely to have meaningful effects on costs.

Given the short length of vacancy chains,we turn our focus to the cumulative number
of effective vacancies created by vacancy chains. Figure 4 shows the cumulative number
of effective vacancies created in each round of moves. Panels A and B show vacancies
created over a one-year time horizon, with panel A showing vacancies created by high-
income urban multifamily housing and panel B showing vacancies created by low-
density suburban single family homes. In both panels, the number of vacancies quickly
plateaus as the chain grows longer due to the relatively low probability of a chain
advancing from one round to the next. This suggests that there would be very few
additional vacancies created in migration rounds beyond the sixth round, and the
number of vacancies created by the sixth round is a close approximation of the total
number of vacancies created by each type of new construction.

Panels C and D show cumulative vacancies created over a four-year horizon, with
panel C showing vacancies created by high-income urban multifamily housing and
panel D showing vacancies created by low-density suburban single family homes.While
chains constructed over this longer time horizon tend to be longer, the distribution
of vacancies is still strongly skewed towards earlier migration rounds such that the
cumulative number of vacancies levels off by the sixth round.

Figure 5 shows how the cumulative number of effective vacancies created by both
kinds of new construction changes over time. Panels A and B demonstrate that both
types of housing produce more vacancies in high-income neighborhoods than in low-
income neighborhoods, though high-income urban multifamily housing produces
substantiallymore high-income vacancies than does low-density suburban single family
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A. High-Income Urban Multifamily B. Low-Density Suburban Single Family

C. High-Income Urban Multifamily D. Low-Density Suburban Single Family

FIGURE 4. Cumulative Vacancies by Migration Round

Note: This figure shows the cumulative number of effective vacancies created in each migration round
located in a tract with a given characteristic. In each panel, migration round 1 represents vacancies
created by the set of moves into the new units that initiated the chain; migration round 2 represents
the vacancies created by the set of moves into the vacancies created in round 1; and so on. Chains are
constructed over a one-year horizon. Tract characteristics for vacancy chains initiated in year t are taken
from the 5-year ACS covering years t –4 to t and quantiles correspond to the national distribution. Income
is median household income per capita.
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housing. In particular, panel A shows that high-income urban multifamily housing
produces .44 and .58 vacancies in top quintile income tracts over a one- and four-year
horizon, respectively. This represents about two thirds of the total number of vacancies
created by this type of housing. In contrast, high-income urban multifamily housing
produces only .1 and .15 vacancies in below-median income tracts over a one- and four-
year horizon, respectively, which represents about 15% of the total number of vacancies
created.

Panel B shows that low-density suburban housing produces .28 and .34 vacancies in
top quintile income tracts over a one- and four-year horizon, respectively, which repre-
sents about 35% of the total number of vacancies created. New low-density suburban
housing creates a comparable number of vacancies in below-median income tracts: .19
and .26 vacancies over one- and four-year horizons, representing about 25% of the total
number of vacancies created.

Both panels A and B show that the majority of vacancies created by new housing
construction of either type are created within a one-year horizon. In addition, the
number of new vacancies created in each year is diminishing. This pattern suggests
that few additional vacancies are created over time horizons beyond four years and we
are therefore capturing the majority of vacancies created by new housing construction.

Panels C and D of Figure 5 focus on how both types of new housing construction
connect to the low-incomehigh-density submarketswhere thehouseholdsmost exposed
to rising housing costs aremost likely to live. Both panels show the number of vacancies
created over time in low-income tracts that are either high-density or very high-density.
We define low-income tracts as those in the bottom quintile of the national distribution
of income; high-density tracts as those in the 19th ventile of the national distribution
of population density; and very high-density tracts as those in the top ventile of the
national distribution of population density.

Panel C shows the number of effective vacancies created in low-income and high-
density tracts by high-income urban multifamily housing. In general, the number of
vacancies created is very low – over a four-year horizon, it takes 50 new high-income
urban multifamily units to generate one vacancy in a low-income very high-density
tract and 100 new units to generate a vacancy in a low-income high-density tract. Panel
D shows that the number of effective vacancies created in these submarkets by new
low-income suburban single family housing is even lower, requiring more than 100 new
units to generate a vacancy in either high- or very high-density low income tracts over
a four-year horizon.
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A. High-Income Urban Multifamily B. Low-Density Suburban Single Family

C. High-Income Urban Multifamily D. Low-Density Suburban Single Family

FIGURE 5. Cumulative Vacancies per Unit over Time

Note: This figure shows the number of effective vacancies created over time in tracts with a given
characteristic per unit of new housing. In each panel, migration round 1 represents vacancies created by
the set of moves into the new units that initiated the chain; migration round 2 represents the vacancies
created by the set of moves into the vacancies created in round 1; and so on. Each point represents the
number of effective vacancies created over six rounds of moves over the indicated time horizon. Tract
characteristics for vacancy chains initiated in year t are taken from the 5-year ACS covering years t – 4 to
t and quantiles correspond to the national distribution. Income is median household income per capita.
Low-income tracts are those in the bottom quintile of the income distribution, high-density tracts are in
the 19th vingtile of the distribution of population density, and very high-density tracts are those in the
top vingtile of the distribution.
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A. High-Income Urban Multifamily B. Low-Density Suburban Single Family

FIGURE 6. Total Vacancies over Time

Note: This figure shows the total number of effective vacancies created over time in tracts with a given
characteristic. In each panel, migration round 1 represents vacancies created by the set of moves into
the new units that initiated the chain; migration round 2 represents the vacancies created by the set of
moves into the vacancies created in round 1; and so on. Each point represents the number of effective
vacancies created over six rounds of moves over the indicated time horizon. Tract characteristics for
vacancy chains initiated in year t are taken from the 5-year ACS covering years t – 4 to t and quantiles
correspond to the national distribution. Income is median household income per capita. Low-income
tracts are those in the bottom quintile of the income distribution, high-density tracts are in the 19th
vingtile of the distribution of population density, and very high-density tracts are those in the top vingtile
of the distribution.

While each unit of high-income urban multifamily housing generates more vacan-
cies in low-income urban neighborhoods than a new unit of low-density suburban
single family housing, Figure 6 shows that low-density suburban single family homes
have created more total vacancies in low-income high-density tracts and a comparable
number of vacancies in low-income very high-density tracts. This is due to the much
larger number of new suburban housing units constructed between 2008 and 2018.

5. The Economic Content of Vacancy Chains

We have presented a detailed picture of how vacancy chains vary according to the type
of new housing that is built and the location of construction. In this section, we conduct
a simulation exercise that connects the observed characteristics of vacancy chains to
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unobserved price and welfare effects.
The simulation exercise is conceptually simple: We first simulate an initial equilib-

riummatching of households to housing units and a vector of prices that sustains that
matching; then, iterating many times, we add a small number of new housing units to a
randomly chosen neighborhood and simulate the new equilibrium prices andmatching.
The difference between the initial equilibrium and the new equilibrium implies a set of
vacancy chains, price effects, and welfare effects, which we analyze to understand what
vacancy chains can tell us about the price and welfare effects of new housing.

We use a modified version of the model estimated by Bayer, Ferreira, and McMillan
(2007) and calibrate it using their parameter estimates.We sample neighborhoods, hous-
ing units, and households from the 1990 IPUMS 5% sample. Given these preferences and
the sampled neighborhoods, housing units, and households, we apply a tatonnement
algorithm to find an initial equilibrium consisting of a market-clearing set of prices and
the corresponding matching of households to housing units. We then repeatedly draw
new units and add them to the housing stock in the simulated data, recomputing the
equilibrium prices and matching of households to units in each iteration. We show how
the resulting simulated vacancy chain characteristics correlate with the characteristics
of the new unit types and locations, as well as the price and welfare effects.

5.1. Model

The following is a modified version of the residential choice model presented in Bayer,
Ferreira, and McMillan (2007), modified to make it easily replicated using the IPUMs
data. There is a finite number of households indexed by i, housing units indexed by h,
and neighborhoods indexed by n. The set of available housing units consists not only of
units in the city, but also units in an outside option neighborhood oo.

Households choose a unit to live in to solve

max
h

V ihn = αiXXh + α
i
ZZn – α

i
p ph + ξ

i
h︸ ︷︷ ︸

≡vihn

+ϵinh,

where Xh is a vector of non-price housing unit characteristics that includes housing unit
age bin indicators and the number of rooms; Zn is a vector of neighborhood character-
istics that includes racial and ethnic composition, college-educated share, and average
income; ph is the price of unit h, ξn is unobserved neighborhood quality; and ϵih is
household i’s idiosyncratic preference for unit h, where ϵih is drawn from a type-1 ex-
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treme value distribution. Units in the outside option are normalized such that vih,oo = 0.

In addition, households are indifferent between units in the outside option, so ϵih = ϵioo
for all units hin the outside option.

Household preferences are permitted to vary with the following observable house-
hold characteristics: The presence of children under 18; capital and non-capital income;
capital income; race and ethnicity; educational attainment; employment status; and
age.

We impute unobserved neighborhood quality ξin by estimating a hedonic regression
and taking the mean residual variation in rents across across housing units within a
neighborhood.We assume that this residual variation reflects a willingness to pay to live
in n that is common across all households. Because the marginal utility of consumption
is permitted to vary across households, this assumption implies that ξin varies across
households.

Parameter estimates are computed from the tables in Bayer, McMillan, and Rueben
(2004). This model is particularly well suited to our application because it models resi-
dential choices at the housing unit level and the parameters are estimated to maximize
the likelihood of observing each household matched with the unit in which it resides.
This is in contrast to many residential discrete choice models in which a continuum of
households choose over neighborhoods and the parameters are estimated to match the
neighborhood choice shares observed in the data.

5.2. Equilibrium and Iteration

Wenow describe the tatonnement algorithmwe use to compute equilibrium prices for a
given set of households and housing units. This is an implementation of the Hungarian
algorithm (Demange, Gale, and Sotomayor, 1986; Easley and Klineberg, 2010).

We begin by setting all prices equal to zero. In each iteration of the algorithm, we
find each household’s utility-maximizing set of housing units given the current vector
of prices, which we refer to as their preferred units. If there is a perfect matching of
households to housing units in which each household matches with one of its preferred
units, we have found an equilibrium. If there is no such perfect matching, then there
must exist a constricted set of units S – a set of units such that: (a) the households that
prefer units in S prefer no units outside of S; and (b) there are more households that
prefer units in S than there are units in S. We identify the constricted set and raise
prices for all units in S by one price increment. We then begin the next iteration of the
algorithm and continue until a perfect matching is found.
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Because the algorithm requires that valuations and prices have discrete support, we
normalize the data in several ways. First, we convert all preferences into a willingness
to pay by rescaling each household’s preference parameters such that the marginal
utility of consumption is unity. This implies that the scale of idiosyncratic preferences
varies across households.

Second, we rescale the utility achieved with each choice to be integer-valued. We do
so by dividing by the price increment used in the algorithm and rounding to the nearest
integer.11

Finally, we normalize the value of the outside option to be equal to the minimum
utility achieved by a household choosing an inside option when prices are equal to 0.
We then shift all utilities by a constant such that the utility achieved by a household
choosing the outside option is 0. After these normalizations, each household’s utility
when matched to housing unit h reflects their willingness to pay (in units implied by
the price increment) to live in h rather than in the outside option.

Once we have computed an initial equilibrium, we repeatedly simulate the effects
of new housing construction. In each iteration, we begin with the initial equilibrium
and randomly sample a small number of new housing units and add them to the set
of existing housing units in a single neighborhood. We then find the new equilibrium,
construct the resulting vacancy chains, and calculate the price and welfare effects of
the increase in supply.

One limitation of this exercise is that it does not allow for vacancy chains to end
as a result of new household formation or because a unit remains vacant, both of
which are important reasons that vacancy chains end in the observed data. For this
exercise, vacancy chains can only end because they reach the outside option. Despite
this limitation, the simulation exercise provides insights that help us interpret the
descriptive patterns described in the previous section.

5.3. Data

Our simulation exercise uses microdata from the 1990 IPUMS 5% sample.12While we
define neighborhoods at the tract level in our descriptive analysis of vacancy chains,

11Rounding to the nearest integer naturally introduces some error into the algorithm. Using smaller
price increments leads to lower approximation error but at the expense of computation time.
12We use the 1990 IPUMS data to facilitate the use of the parameter estimates from Bayer, Ferreira, and

McMillan (2007). One concern with using these data rather thanmore recent data is that the demographic
composition and amenity value of cities have changed substantially since 1990. This might mean that
our simulation results do not generalize to the time period used for our descriptive analysis of vacancy
chains.
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the most granular geographic units we observe in our simulation data are PUMAs. We,
therefore, define neighborhoods at the PUMA level for this exercise. While PUMAs
are much more populous than tracts, containing at least 100,000 individuals, they are
geographically compact in dense metro areas, making them a reasonable proxy for
neighborhoods.

The tatonnement algorithm we use to find equilibrium matchings and prices is
computationally intensive and fails to converge when using a realistic number of house-
holds, housing units, and neighborhoods. Because of this, we use a reduced sample
to simulate the effects of increased housing supply. For our primary specification, we
construct a bootstrapped sample by randomly sampling 10 PUMAs from the Chicago
CBSA with replacement. We then sample 100 housing units and 133 households from
each of the sampled PUMAs. In addition, we take all housing units in our sampled
PUMAs that are less than one year old as the pool from which we draw new housing
units in our simulation.

Because there are more households than housing units in our sample, we augment
the sample by adding additional units to represent the outside option. The value of these
outside option units is normalized such that households have zero willingness to pay
to live in them and are indifferent between all outside option units. When computing
an equilibrium, we thus have a perfect matching when every housing unit in the CBSA
is matched to a household and the remaining households are matched to units in the
outside option.

Table 1 reports mean characteristics of the PUMAs used in the simulation exercise.
The main point worth noting is that there is substantial variation in neighborhood
characteristics, with PUMAs ranging from very low-income and low college share to
high-income high college share. Figure 7 shows the locations of these neighborhoods
in the Chicago Metropolitan Area. The PUMAs used in our simulation exercise are also
geographically varied, with some located in high-density areas near the city center and
others in more distant suburbs.
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TABLE 1. Mean Characteristics of Sampled PUMAs

PUMA ξn Black Hispanic College Household
Income

Owner-
occupied

Rooms Age Employed Child
Present

Built
in 80s

1 -12.4 0.11 0.03 0.25 48,628 0.78 6.2 44.9 0.81 0.50 0.20
2 -82.7 0.22 0.04 0.24 45,301 0.77 6.0 48.8 0.71 0.43 0.10
3 -45.3 0.81 0.01 0.25 23,573 0.16 4.2 48.9 0.44 0.34 0.05
4 -17.1 0.00 0.02 0.27 52,834 0.84 6.2 47.8 0.77 0.41 0.36
5 -0.9 0.03 0.04 0.22 47,093 0.75 5.6 49.6 0.72 0.35 0.09
6 34.7 0.03 0.02 0.50 59,717 0.72 6.2 43.0 0.86 0.42 0.30
7 46.6 0.21 0.03 0.17 42,211 0.78 5.7 47.7 0.73 0.43 0.14
8 -50.4 0.49 0.19 0.10 31,548 0.64 5.3 50.7 0.58 0.44 0.02
9 -93.6 0.00 0.02 0.20 41,389 0.75 5.8 47.3 0.74 0.42 0.16
10 -8.9 0.79 0.16 0.04 20,989 0.29 5.2 47.1 0.44 0.55 0.08

Note: This table reports mean characteristics of the PUMAs sampled for our simulation exercise, as
reported in the 1990 Census via IPUMS. The column ξn reports the mean residual from a hedonic
regression of rent on PUMA- and unit-level characteristics. The mean individual-level characteristics
Black, Hispanic, College, Age, and Employed are calculated based on the characteristics of the household
head. Child Present indicates the mean number of households with a member under 18 years of age. All
means are calculated using household weights.
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5.4. Results

Initial Equilibrium. We begin by describing the initial equilibrium of our simulation
exercise. Reassuringly, we observe that the patterns in this initial equilibriumare similar
to those in the underlying data. Figure 8 shows that the simulated housing unit prices
in our initial equilibrium are highly correlated with observed housing prices, with an
increase in a unit’s observed being accompanied on average by a one-for-one increase
in that unit’s simulated price.

Figure 9 shows that the matching of households to units preserves the sorting pat-
terns observed in the underlying data. Each panel shows the mean of a given character-
istic of sampled households conditional on the mean of the PUMA they reside in. The
red squares show this relationship for the underlying data, while the blue circles show
the relationship between the mean characteristics of sampled households conditional
on the mean of the PUMA they match with in our initial equilibrium. The pattern of
sorting that results from our simulation is remarkably similar to the pattern observed
in the underlying data, with high-income households sorting to high-income PUMAs,
college-educated households sorting to PUMAs with a high college share, Black house-
holds sorting PUMAs with a higher share of Black households, and Hispanic households
sorting to PUMAs with a higher share of Hispanic households.

While the preference parameters we use in our simulation are estimated to match
similar data, there are several reasons why it is not ex-ante obvious that our simulation
exercise would be able to replicate these features of the underlying data so closely. First,
and most importantly, the preference parameters estimated by Bayer, Ferreira, and
McMillan (2007) are estimated via maximum-likelihood, taking prices as given and
with no structure placed on how households match with housing units. By contrast, we
simulate equilibrium prices via a tatonnement algorithm to find a one-to-one matching
of households to housing units such that no household wants to switch units.

Second, the preference parameters are estimated using data onhouseholds andhous-
ing units in San Francisco, while our simulation exercise uses data fromChicago. If there
were unobserved heterogeneity in preferences across cities, applying the preferences
of San Franciscans to the residential choices facing Chicagoans might have resulted in a
simulated equilibrium that failed to match the observed patterns of residential choices.

Finally, we conduct our simulation exercise using only a small subset of the data.
The fact that households in our sample have a limited choice set might have resulted in
a different pattern of sorting than in the observed data. Overall, the similarity between
our simulation results and the observed data gives us more confidence when applying
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FIGURE 7. Chicago Metropolitan Area

Note: This figure shows the location of the ten 1990 PUMAs used in our simulation exercise. PUMA
numbers correspond to those in Table 1.

26



FIGURE 8. Simulated Unit Prices and Observed Rent

Note: This figure shows the mean simulated price of housing units conditional on their observed rent
in the IPUMS 1990 5% sample. We estimate a hedonic regression to impute the rent of owner-occupied
housing units in the IPUMS sample.

our simulation results to interpret the descriptive facts on vacancy chains presented in
the first part of this paper.

Price and Welfare Effects. We now turn to our main objects of interest for this exercise
– the simulated price and welfare effects of new housing supply. Figure 10 shows the
distribution of these effects generated by 1000 simulations. Panel A shows the distribu-
tion of welfare effects as a percent of the initial level of aggregate welfare. The dashed
line indicates the mean welfare effect of 0.5%. Given that we normalize the utility of
the outside option to be zero and that, in each simulation, we add five housing units to
the existing sample of 1,000, this implies an elasticity of the returns to living in the city
of 1. Panel B shows the distribution of price effects, which approximately mirrors the
distribution of welfare effects. The dashed line corresponds with the mean price effect
of -.14%, which implies that the elasticity of the urban rent premium with respect to
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A. Household Income B. College Educated

C. Black D. Hispanic

FIGURE 9. Simulated and Observed Residential Sorting

Note: This figure shows themean characteristics of households used in our simulation exercise conditional
on the PUMA-levelmean of those characteristics in the PUMAs they are assigned to in the initial simulated
equilibrium. PUMA-levelmeans are estimatedusing the IPUMS 1990 5%sample. Eachpanel represents the
1,000 households in our sample that are matched with a sampled housing unit in the initial equilibrium.
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A. Welfare Effects B. Price Effects

FIGURE 10. Simulated Welfare and Price Effects of New Housing

Note: This figure shows the distribution of welfare and price effects from new housing calculated over
1000 simulations. The dashed red line indicates the mean effect size.

supply is 0.3.
Table 2 shows the incidenceof these effects ondifferent types of households. Columns

two and four, respectively, show aggregate utility and mean prices for each group in
our simulation’s initial equilibrium, while columns three and five show the change in
aggregate utility and average prices for each group. The welfare effects reported in
columns one and two show that households that move and local households (i.e., those
residing in the PUMA that receives new housing supply) experience the largest percent
increases in welfare – 2.1% and 1.7% respectively. The fact that 43% of the aggregate
welfare gains accrue to movers is attributable mostly to better matches. While local
households experience relatively large percent increases in welfare, 83% of the aggre-
gate welfare effect accrues non-locally, which suggests that the non-local price effects
of new housing supply are economically important.

How does the variation in welfare and price effects documented in Figure 10 and
Table 2 correlate with the vacancy chains that result from the addition of new housing?
Figure 11 shows themean simulated price andwelfare effects of newhousing conditional
on the number of vacancies created in a neighborhood. The mean welfare effects are
calculated for households that lived in a PUMA in which a given number of vacancies
was created, while mean price effects are calculated for housing units in a PUMA with a
given number of vacancies. Both price and welfare effects are strongly correlated with
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TABLE 2. Price and Welfare Effects

# of Households Utility ∆Utility Price ∆Price

All 1,330 2,612 14.1 547.5 -0.008
(12.3) (0.009)

Low-Income Households 665 1,119 4.9 528.1 -0.005
(5.0) (0.007)

Low-Income PUMAs 500 993 4.6 655.7 -0.007
(4.6) (0.008)

Movers 240 281 6.0 599.8 -0.010
(10) (18) (3.7) (14.8) (0.012)

Stayers 1,095 2,331 8.2 536.3 -0.007
(10) (18) (9.4) (3.4) (0.009)

Local 100 211 2.4 728.2 -0.018
(64) (3.3) (433.7) (0.027)

# of Simulations: 1,000

Note: This table reports means of initial utility and prices andmean welfare and price effects for different
PUMAs and households over 1000 simulations. Standard errors are reported in parentheses.

the number of vacancies. Households residing in PUMAs in which no vacancies were
created experienced an increase in welfare of only .26%, while those in PUMAs with
five or more vacancies experienced an average increase in welfare of 1.1%. Similarly,
units in PUMAs with no vacancies saw a fall in prices of less than .001% while those
with five or more vacancies saw a more than three-fold greater fall in prices of .0024%.

Demand Substitution and Vacancy Chains. We also examine how our simulated price
effects compare to those predicted by the underlying residential choice model. To
do so, we compute the individual own- and cross-price partial derivatives of demand
implied by the model. Following the notation introduced in the earlier section, we
denote the own-price partial derivative of demand for neighborhood i by ϵi ≡ –∂Di∂ pi
and the cross-price partial derivative of demand for neighborhood i with respect to the
average price of units in j by γi j ≡

∂Di
∂ p j

. We denote the residential diversion ratio of j

for i by λ j i ≡
γ j i
ϵi
.

To better understand what vacancies reveal about price and welfare effects, we
estimate a series of regressions in which we regress the simulated change in prices on
these substitution terms and the number of simulated vacancies. To make the estimates
easier to interpret, we normalize all variables to bemean zerowith unit variance. Table 3
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FIGURE 11. Simulated Price and Welfare Effects Conditional on Number of Vacancies

Note: Welfare effects are calculated at the household level and are conditional on the number of vacancies
in the household’s PUMA of residence in the initial equilibrium. Price effects are calculated at the housing
unit level. Point sizes are proportional to the number of observations.

reports these regression estimates. Column 1 reports estimates from a regression of the
simulated change in prices in PUMA j on the direct and indirect substitution chains
between PUMAs i and j , where i is the PUMA in which new housing was added. We
include indirect substitution effects that pass through up to two different PUMAs. We
find that both direct and indirect substitution effects are highly significant predictors of
the price effects of new housing supply – a one standard deviation increase in direct
substitution between i and j leads to a .79 standard deviation increase in the magnitude
of the price effect while a one standard deviation increase in indirect substitution
mediated by one and two other neighborhoods leads, respectively, to .33 and .5 standard
deviation increases in the magnitude of the price effect.

Column 2 adds the number of vacancies created in PUMA j as a regressor. We find
that the number of vacancies strongly predicts variation in the simulated price effects,
with a one standard deviation increase in vacancies (i.e. an increase of 2.6) predicting
a .27 standard deviation increase in the magnitude of the price effect. Column 3 adds
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TABLE 3. Regression Estimates

(1) (2) (3) (4) (5)
∆Price j ∆Price j ∆Price j ∆Price j ∆Price j

ϵ–1j λ j i -0.785∗∗∗ -0.513∗∗∗ -0.384∗∗∗

(0.033) (0.035) (0.037)
ϵ–1j

∑
k λ j kλki -0.332∗∗∗ -0.321∗∗∗ -0.298∗∗∗

(0.019) (0.019) (0.019)
ϵ–1j

∑
k,ℓ λ j kλkℓλℓi -0.497∗∗∗ -0.407∗∗∗ -0.293∗∗∗

(0.036) (0.035) (0.037)
Vacancies j -0.272∗∗∗ 0.228∗∗∗ -0.282∗∗∗ 0.424∗∗∗

(0.014) (0.055) (0.010) (0.054)
Vacancies j × ϵ–1j -0.532∗∗∗ -0.718∗∗∗

(0.057) (0.054)
Constant 0.107∗∗∗ 0.087∗∗∗ 0.060∗∗∗ -0.056∗∗∗ -0.056∗∗∗

(0.013) (0.013) (0.013) (0.010) (0.010)

R2 0.077 0.110 0.118 0.075 0.091
Observations 10,000 10,000 10,000 10,000 10,000

Note: All variables are transformed to be mean zero with unit variance. ϵi ≡ –∂Di∂ pi
is the own-price partial

derivative of demand for neighborhood i; γi j ≡
∂Di
∂ p j

is the cross-price partial derivative of demand for

neighborhood i with respect to the average price of units in j . λ j i ≡
γ j i
ϵi

is the residential diversion ratio
of j for i.

the number of vacancies interacted with the inverse own-price effect for PUMA j . This,
too, is a highly significant predictor of variation in price effects and is associated with
the largest variation in effect sizes of any regressor.

Columns 4 and 5 consider the predictive power of the number of vacancies alone.
Notably, variation in the number of vacancies alone is just as predictive of variation in
price effects as the direct and indirect substitution terms in column 1, explaining 7% of
the variation in price effects. In column 5, adding the interaction between the number
of vacancies and the inverse own-price elasticity of demand for PUMA j explains three-
quarters of the variation explained by the full set of regressors in column 3.

Overall, the results reported in Table 3 show that the number of vacancies created
by vacancy chains strongly predicts the incidence of price effects generated by new
housing supply. While the direct and indirect substitution effects have independent
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predictive power, these terms are much harder to observe. With just ten PUMAs, forty-
five distinct pairwise cross-price terms and ten distinct own-price terms are required
to calculate these effects. In a realistic setting with many more PUMAs, the number
of parameters to estimate quickly becomes infeasibly large. In contrast, the number
of vacancies created in vacancy chains is easily observed, regardless of the number
of neighborhoods, and is as predictive of variation in price effects as the substitution
parameters.

6. Conclusion

The effect of newhousing supply in one submarket on housing costs in other submarkets
depends crucially on how residential mobility connects these submarkets. The impact
that the large increase in suburban housing supply over the past four decades has had
on the costs facing low-income renters in the urban core thus depends on whether
the chains of moves it initiated reached low-income high-density neighborhoods. Our
results show that they did not – instead, residential vacancy chains initiated by new
low-density suburban single family housing end quickly, before they can reach the
urban neighborhoods in which residents are most exposed to rising housing costs. This
descriptive feature of vacancy chains, when viewed in light of our simulation results,
suggests that the non-local price effects of new housing supply are concentrated in
nearby submarkets and that the incidence of the benefits of additional housing therefore
depends crucially on what kind of housing is built and where.

These results have important implications for housing policy that seeks to increase
housing affordability. While many supply advocates argue that increasing supply of
any kind will be effective at decreasing housing costs for all, this paper suggests that a
more targeted approach is required if policymakers want to reduce costs in the least
affordable neighborhoods or for the most rent-burdened households. Our results also
suggest that a more targeted approach can be effectively guided by the distribution of
vacancies created by new supply in a given submarket. Our simulation results show that
the distribution of these vacancies is as predictive of variation in price effects as the
cross-neighborhood substitution effects derived from individual demand elasticities.
While housing policy will have to be guided by the costs of construction in different
neighborhoods, as well as potential effects on local amenities, the observed number of
vacancies connected to different kinds of new housing can help policymakers evaluate
the non-local price effects of a given policy.
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